Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.902
Filtrar
1.
Jt Dis Relat Surg ; 35(2): 340-346, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727113

RESUMO

OBJECTIVES: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement. MATERIALS AND METHODS: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated. RESULTS: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added. CONCLUSION: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.


Assuntos
Cimentos Ósseos , Compostos de Boro , Força Compressiva , Teste de Materiais , Polimetil Metacrilato , Compostos de Boro/química , Compostos de Boro/farmacologia , Polimetil Metacrilato/química , Cimentos Ósseos/química , Teste de Materiais/métodos , Porosidade , Estresse Mecânico
2.
Biomater Adv ; 160: 213864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642519

RESUMO

Although calcium phosphate has been extensively utilized in orthopedic applications such as spine, limbs, dentistry, and maxillofacial surgery, the lack of osteoinductive properties often hinders its effectiveness in treating bone defects resulting from pathological micro-environment such as tumor surgery, osteoporosis, osteomyelitis, and diabetic. Therefore, a novel bone cement based on magnesium-doped bioactive glass was developed in this study. The moderate release of magnesium ions improved the mechanical properties by controlling the crystal size of hydroxyapatite. Through detailed discussion of element content and heat treatment temperature, it was found that 2Mg-BG-800 was suitable for the construction of bone cement. 2Mg-BG-BC exhibited favorable initial (15 min) and final (30 min) setting time, compressive strength (29.45 MPa), compressive modulus (1851.49 MPa), injectability, and shape-adaptability. Furthermore, Mg-BG-BC demonstrated the ability to enhance the osteogenic differentiation of BMSCs, and induce macrophage polarization towards the M2 phenotype, suggesting its potential for osteoporotic fracture regeneration.


Assuntos
Cimentos Ósseos , Vidro , Magnésio , Osteogênese , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Vidro/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Força Compressiva
3.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657556

RESUMO

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Assuntos
Antibacterianos , Bentonita , Cimentos Ósseos , Fosfatos de Cálcio , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Escherichia coli , Gentamicinas , Staphylococcus aureus , Bentonita/química , Antibacterianos/farmacologia , Antibacterianos/química , Gentamicinas/farmacologia , Gentamicinas/química , Gentamicinas/administração & dosagem , Gentamicinas/farmacocinética , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
4.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38623831

RESUMO

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Assuntos
Cimentos Ósseos , Hidrazonas , Isoniazida , Isoniazida/química , Isoniazida/farmacologia , Cimentos Ósseos/química , Animais , Hidrazonas/química , Hidrazonas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/administração & dosagem , Camundongos , Liberação Controlada de Fármacos , Polimetil Metacrilato/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
5.
Biomed Mater ; 19(4)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653261

RESUMO

Artificial bone graft with osteoconductivity, angiogenesis, and immunomodulation is promising clinical therapeutics for the reluctant healing process of bone defects. Among various osteogenic substitutes, polymethyl methacrylate (PMMA) bone cement is a quit competitive platform due to its easy deployment to the bone defects with irregular shape and biomimetic mechanical properties. However, the biologically inert essence of PMMA is reliant on the passive osseointegration and cannot provide sufficient biologic cues to induce fast bone repair. Bioactive glass could serve as an efficient platform for the active osteogenesis of PMMA via ionic therapy and construction of alkaline microenvironment. However, the direct of deployment of bioactive glass into PMMA may trigger additional cytotoxicity and hinder cell growth on its surface. Hence we incorporated ionic therapy as osteogenic cue into the PMMA to enhance the biomedical properties. Specifically, we synthesized core-shell microspheres with a strontium-doped bioactive glass (SrBG) core and hydroxyapatite (HA) shell, and then composited them with PMMA to introduce multifunctional effects of HA incorporation, alkaline microenvironment construction, and functional ion release by adding microsphere. We preparedxSrBG@HA/PMMA cements (x= 30, 40, 50) with varied microsphere content and evaluated impacts on mechanical/handling properties, ion release, and investigated the impacts of different composite cements on proliferation, osteogenic differentiation, angiogenic potential, and macrophage polarization. These findings provide new perspectives and methodologies for developing advanced bone biomaterials to promote tissue regeneration.


Assuntos
Cimentos Ósseos , Durapatita , Microesferas , Osteogênese , Polimetil Metacrilato , Estrôncio , Cimentos Ósseos/química , Polimetil Metacrilato/química , Osteogênese/efeitos dos fármacos , Porosidade , Estrôncio/química , Animais , Camundongos , Durapatita/química , Materiais Biocompatíveis/química , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Vidro/química , Humanos , Substitutos Ósseos/química
6.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
7.
Int J Biol Macromol ; 266(Pt 1): 130998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521332

RESUMO

Although calcium­magnesium phosphate cements (CMPCs) have been widely applied to treating critical-size bone defects, their repair efficiency is unsatisfactory owing to their weak surface bioactivity and uncontrolled ion release. In this study, we lyophilized alginate sodium (AS) as a coating onto HAp/K-struvite (H@KSv) to develop AS/HAp/K-struvite (AH@KSv), which promotes bone regeneration. The compressive strength and hydrophilicity of AH@KSv significantly improved, leading to enhanced cell adhesion in vitro. Importantly, the SA coating enables continuous ions release of Mg2+ and Ca2+, finally leading to enhanced osteogenesis in vitro/vivo and different patterns of new bone ingrowth in vivo. Furthermore, these composites increased the expression levels of biomarkers of the TRPM7/PI3K/Akt signaling pathway via an equilibrium effect of Mg2+ to Ca2+. In conclusion, our study provides novel insights into the mechanisms of Mg-based biomaterials for bone regeneration.


Assuntos
Alginatos , Cimentos Ósseos , Regeneração Óssea , Fosfatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Canais de Cátion TRPM , Regeneração Óssea/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Alginatos/química , Alginatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fosfatos/química , Fosfatos/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Propriedades de Superfície , Camundongos , Ratos , Força Compressiva
8.
PLoS One ; 19(3): e0299325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457423

RESUMO

PURPOSE: Vertebral compression fractures are often treated with vertebroplasty, and filling the injured vertebrae with bone cement is a key part of vertebroplasty. This meta-analysis was performed to compare the clinical efficacy and safety of mineralized collagen-polymethylmethacrylate (MC-PMMA) and polymethylmethacrylate (PMMA) bone cement in the treatment of vertebral compression fractures by vertebroplasty. METHODS: A computerized search of the published literature on mineralized collagen-polymethylmethacrylate and polymethylmethacrylate bone cement in the treatment of vertebral compression fractures was conducted in the China National Knowledge Infrastructure (CNKI), Wanfang database, PubMed, Embase, and Cochrane Library. The search was carried out from the time the database was created to March 2023 and 2 researchers independently conducted literature searches to retrieve a total of 884 studies, of which 12 were included in this meta-analysis. Cochrane systematic review methods were used to assess the quality of the literature and a meta-analysis was performed using ReviewManager 5.4 software. RESULTS: The results of the present meta-analysis showed that in postoperative adjacent vertebral fractures [OR = 0.25; 95% CI (0.15, 0.41)], postoperative cement leakage [OR = 0.45; 95% CI (0.30, 0.68)], Oswestry Disability Index (ODI) scores in the first 3 days after surgery [OR = -0.22; 95% CI (-0.42, -0.03)], ODI score at 6-12 months postoperatively [OR = -0.65; 95% CI (-0.97, -0.32)], visual analog scale (VAS) score at 6-12 months postoperatively [OR = -0.21; 95% CI (-0.46, 0.04)], and 1-year postoperative CT values [OR = 5.56; 95% CI (3.06, 8.06)], the MC-PMMA bone cement group was superior to the PMMA bone cement group. However, the differences between the two groups were not statistically different in terms of cement filling time, cement filling volume, operation time, intraoperative bleeding, hospitalization time, postoperative (<1 week, 3-6 months) vertebral body posterior convexity Cobb's angle, postoperative (<1 week, 6-12 months) vertebral body anterior margin relative height, postoperative (≤3 days, 1-3 months) pain VAS score and postoperative (1-3 months) ODI score. CONCLUSIONS: Compared with PMMA bone cement, the application of MC-PMMA bone cement is advantageous in reducing postoperative complications (adjacent vertebral fracture rate, cement leakage rate), pain relief, and functional recovery in the long-term postoperative period (>6 months), but there is still a need for more high-quality randomized controlled studies to provide more adequate evidence.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Cimentos Ósseos/uso terapêutico , Cimentos Ósseos/química , Colágeno , Fraturas por Compressão/cirurgia , Cifoplastia/métodos , Fraturas por Osteoporose/cirurgia , Dor/tratamento farmacológico , Polimetil Metacrilato/uso terapêutico , Polimetil Metacrilato/química , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento
9.
ACS Biomater Sci Eng ; 10(4): 2398-2413, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38477550

RESUMO

In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Humanos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Polimetil Metacrilato/farmacologia , Polimetil Metacrilato/química , Osteogênese , Fraturas da Coluna Vertebral/cirurgia , Coluna Vertebral
10.
J Biomed Mater Res A ; 112(7): 1057-1069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380877

RESUMO

The increasing prevalence of implant-associated infections (IAI) in orthopedics remains a public health challenge. Calcium phosphates (CaPs) are critical biomaterials in dental treatments and bone regeneration. It is highly desirable to endow CaPs with antibacterial properties. To achieve this purpose, we developed a photocrosslinked methacrylated alginate co-calcium phosphate cement (PMA-co-PCPC) with antibacterial properties, using α-tricalcium phosphate (α-TCP) powders with 16% amorphous contents as solid phase, liquid phases containing CuCl2 and SrCl2 as an inhibitor, and CaCl2 as an activator to construct PCPC. When CaCl2 started to activate the hydration reaction, Sr2+ or Cu2+ ions were exchanged with Ca2+, and α-TCP dissolution was restarted and gradually hydrated to form calcium-deficient hydroxyapatite (CDHA). PMA was added to crosslink with Cu/Sr ions and form gel-layer-wrapped hydrated CDHA. This study explored the binding mechanism of PMA and PCPC and the ion release rule of Ca2+ → Sr2+/Cu2+, optimized the construction of several antibacterial PMA-co-PCPC materials, and analyzed the physical, chemical, and biological properties. Because of the combined effect of Cu and Sr ions, the scaffold exhibited a potential antibacterial activity, promoting bone formation and vascular regeneration. This work provides a basis for designing antibacterial calcium phosphate biomaterials with controllable treatment, which is an important characteristic for preventing IAI of biomaterials.


Assuntos
Alginatos , Antibacterianos , Fosfatos de Cálcio , Osteogênese , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Alginatos/química , Alginatos/farmacologia , Osteogênese/efeitos dos fármacos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Reagentes de Ligações Cruzadas/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
11.
ACS Biomater Sci Eng ; 10(2): 1077-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301150

RESUMO

It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 µm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The µCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.


Assuntos
Sulfato de Cálcio , Hidroxiapatitas , Osteogênese , Animais , Coelhos , Sulfato de Cálcio/farmacologia , Pós , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
12.
J Orthop Surg Res ; 19(1): 98, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291442

RESUMO

BACKGROUND: Injectable bone cement is commonly used in clinical orthopaedics to fill bone defects, treat vertebral compression fractures, and fix joint prostheses during joint replacement surgery. Poly(propylene fumarate) (PPF) has been proposed as a biodegradable and injectable alternative to polymethylmethacrylate (PMMA) bone cement. Recently, there has been considerable interest in two-dimensional (2D) black phosphorus nanomaterials (BPNSs) in the biomedical field due to their excellent photothermal and osteogenic properties. In this study, we investigated the biological and physicochemical qualities of BPNSs mixed with PPF bone cement created through thermal cross-linking. METHODS: PPF was prepared through a two-step process, and BPNSs were prepared via a liquid phase stripping method. BP/PPF was subsequently prepared through thermal cross-linking, and its characteristics were thoroughly analysed. The mechanical properties, cytocompatibility, osteogenic performance, degradation performance, photothermal performance, and in vivo toxicity of BP/PPF were evaluated. RESULTS: BP/PPF exhibited low cytotoxicity levels and mechanical properties similar to that of bone, whereas the inclusion of BPNSs promoted preosteoblast adherence, proliferation, and differentiation on the surface of the bone cement. Furthermore, 200 BP/PPF demonstrated superior cytocompatibility and osteogenic effects, leading to the degradation of PPF bone cement and enabling it to possess photothermal properties. When exposed to an 808-nm laser, the temperature of the bone cement increased to 45-55 °C. Furthermore, haematoxylin and eosin-stained sections from the in vivo toxicity test did not display any anomalous tissue changes. CONCLUSION: BP/PPF exhibited mechanical properties similar to that of bone: outstanding photothermal properties, cytocompatibility, and osteoinductivity. BP/PPF serves as an effective degradable bone cement and holds great potential in the field of bone regeneration.


Assuntos
Fraturas por Compressão , Fumaratos , Polipropilenos , Fraturas da Coluna Vertebral , Humanos , Osteogênese , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fósforo , Materiais Biocompatíveis/química
13.
Biomed Mater Eng ; 35(1): 13-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37599515

RESUMO

BACKGROUND: Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs. OBJECTIVE: Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed. Secondly, the interactions between pDM and CPC and their effect on mechanical properties were investigated. METHODS: The interactions between pDM and CPC were performed by Nuclear Magnetic Resonance, Laser Raman, X-ray Photoelectron Spectroscopy, Fourier Transform-Infrared Spectroscopy and X-ray Diffraction Analysis. RESULTS: The toughness and compressive strength of pDM-CPC scaffold were both significantly enhanced, because of the enhanced interface binding strength among CPC and pDM due to their interaction and the improved mechanical strength of pDM owing to its self-oxidation cross-linking. The toughness of pDM-CPC scaffolds increased with the increased contents of pDM, while pDM-CPC scaffold containing 35 wt.% pDM had the highest compressive strength of all, which the latter was more than five times compared to that of CPC. CONCLUSION: The mechanically strong pDM-CPC scaffolds has potential application in bone regeneration as well as in craniofacial and orthopedic repair.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Força Compressiva , Osso e Ossos , Cimentos Ósseos/química , Teste de Materiais
14.
J Biomed Mater Res B Appl Biomater ; 112(1): e35316, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578036

RESUMO

As potential alternatives for calcium phosphate bone cements, magnesium phosphate bone cements (MPC) have attracted considerable attention in recent years. However, their several defects, such as rapid setting times, highly hydration temperature and alkaline pH due to the part of the unreacted phosphate, restricted their applications in human body. With aim to overcome these defects, a novel polypeptite poly(γ-glutamic acid) (γ-PGA) modified MPC were developed. Effect of γ-PGA content on the injectability, anti-washout ability, setting times, hydration temperature, mechanical compressive strength, in vitro bioactivity and degradation were investigated. Moreover, in vitro cyto-compatibility was evaluated using MC3T3-E1 cells by CCK-8 and Live/Dead staining. All these results indicated that the 10%PGA-MPC with an improved handling performances, low hydration temperature, high mechanical compressive strength, and good cyto-compatibility hold a great potential for bone repair and regeneration.


Assuntos
Cimentos Ósseos , Compostos de Magnésio , Fosfatos , Ácido Poliglutâmico/análogos & derivados , Humanos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Teste de Materiais , Fosfatos/química , Fosfatos de Cálcio/química , Regeneração Óssea , Força Compressiva
15.
J Biomed Mater Res B Appl Biomater ; 112(1): e35335, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772460

RESUMO

Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mß-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (ß-TCP). The mß-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mß-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mß-TCP containing poloxamer 407 was similar to that of mß-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mß-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mß-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.


Assuntos
Fosfatos de Cálcio , Poloxâmero , Poloxâmero/farmacologia , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Hidroxiapatitas
16.
J Orthop Res ; 42(3): 547-554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884321

RESUMO

Rifampin has been proven to be effective in the treatment of prosthetic infections due to its ability to intercalate into biofilms. The use of rifampin in antibiotic spacers is not well described, which would be especially important in the local periprosthetic environment where parenteral doses have poor penetration. The null hypothesis tests if rifampin use in polymethyl methacrylate (PMMA) cement will show no clinically significant impact on mechanical strength at antibiotic concentrations that remain bactericidal. Test antibiotic cement samples supplemented with 0, 30, 50, 100, 150, or 200 mg of rifampin into a standard 40 g bag were tested for compression to failure using published ASTM standards. The samples were then inoculated with Pseudomonas aeruginosa and either evaluated for lipopolysaccharide (LPS) presence as a marker of biofilm or tested by elution as the Kirby Bauer assay. Rifampin concentrations of 30 and 50 mg, showed no statistically different mechanical characteristics from control PMMA (p > 0.05). The 100-mg sample fell within the acceptable range of compressive strength and had significantly less LPS and bacterial presence compared to the control at 12 and 24 h. The ability of PMMA with 100 mg of rifampin to maintain its structural integrity and have significant bacterial inhibition at 12 and 24 h makes it a great candidate as an antibiotic bone cement additive. PMMA loaded with up to 100 mg of rifampin shows promise in the treatment and prevention of periprosthetic joint infection for total knee and total hip arthroplasty.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Infecções Relacionadas à Prótese , Humanos , Antibacterianos/uso terapêutico , Cimentos Ósseos/química , Rifampina/farmacologia , Rifampina/química , Polimetil Metacrilato/química , Pseudomonas aeruginosa , Lipopolissacarídeos/farmacologia , Biofilmes , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/prevenção & controle
17.
Acta Biomater ; 174: 447-462, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000527

RESUMO

Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.


Assuntos
Fraturas Ósseas , Ortopedia , Humanos , Fosfosserina , Pós , Materiais Biocompatíveis , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Teste de Materiais
18.
Biomater Adv ; 157: 213731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103399

RESUMO

In the realm of regenerating damaged or degenerated bones through minimally invasive techniques, injectable materials have emerged as exceptionally promising. Among these, calcium phosphate bone cements (CPCs) have garnered significant interest due to their remarkable bioactivity, setting it apart from non-degradable alternatives such as polymethyl methacrylate cements. α-Tricalcium phosphate (α-TCP) is a widely used solid phase component in CPCs. It can transform into calcium-deficient hydroxyapatite (CDHAp) when it comes in contact with water. In this study, we aimed to create an injectable, self-setting bone cement using low-temperature synthesized α-TCP powder as a single precursor of the powder phase. We found that changes in the pH of the liquid phase (pH 6.0, pH 6.2, pH 7.0 and pH 7.4) significantly altered the cement's setting, handling, and mechanical properties. The formation of the octacalcium phosphate (OCP) phase was identified in our study, which positively affects the osteoblastic cell response. Hardened OCP-forming bone cements prepared using a liquid phase with pH 7.0 and 7.4 showed better osteogenic cell attachment and proliferation than those prepared with pH 6.0 and 6.2. Our study suggests that changes in the pH of the liquid phase can significantly affect the properties of α-TCP-based bone cement, and the presence of the OCP phase is crucial for optimal cement performance.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Pós , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Durapatita/farmacologia
19.
J Biomater Sci Polym Ed ; 35(3): 345-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113176

RESUMO

Carbon allotrope materials (i.e. carbon nanotubes (CNTs), graphene, graphene oxide (GO)), have been used to reinforce acrylic bone cement. Nevertheless, the intrinsic incompatibility among the above materials produces a deficient interphase. Thus, in this work, the effect of the content of functionalized graphene oxide with a reactive silane on the mechanical properties and cell adhesion of acrylic bone cement was studied. GO was obtained by an oxidative process on natural graphite; subsequently, GO was functionalized with 3-methacryloxypropyltrimethoxysilane (MPS) to enhance the interphase between the graphenic material and acrylic polymeric matrix. Pristine GO and functionalized graphene oxide (GO-MPS) were characterized physicochemically (XPS, XRD, FTIR, and Raman) and morphologically (SEM and TEM). Silanized GO was added into the acrylic bone cement at different concentrations; the resulting materials were characterized mechanically, and their biocompatibility was also evaluated. The physicochemical characterization results showed that graphite was successfully oxidized, and the obtained GO was successfully functionalized with the silane coupling agent (MPS). SEM and TEM images showed that the GO is composed of few stacked layers. Compression testing results indicated a tendency of increasing stiffness and toughness of the acrylic bone cements at low concentration of functionalized GO. Additionally, the bending testing results showed a slightly increase in bone cement strain with the incorporation of GO-MPS. Finally, all samples exhibited cell viability higher than 70%, which means that materials are considered non-cytotoxic, according to the ISO 10993-5 standard.


Assuntos
Grafite , Nanotubos de Carbono , Polimetil Metacrilato/química , Grafite/química , Teste de Materiais , Silanos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
20.
Adv Healthc Mater ; 13(5): e2301870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145973

RESUMO

Bone adhesive is a promising candidate to revolutionize the clinical treatment of bone repairs. However, several drawbacks have limited its further clinical application, such as unreliable wet adhesive performance leading to fixation failure and poor biodegradability inhibiting bone tissue growth. By incorporating catechol groups and disulfide bonds into polyurethane (PU) molecules, an injectable and porous PU adhesive is developed with both superior wet adhesion and biodegradability to facilitate the reduction and fixation of comminuted fractures and the subsequent regeneration of bone tissue. The bone adhesive can be cured within a reasonable time acceptable to a surgeon, and then the wet bone adhesive strength is near 1.30 MPa in 1 h. Finally, the wet adhesive strength to the cortical bone will achieve about 1.70 MPa, which is also five times more than nonresorbable poly(methyl methacrylate) bone cement. Besides, the cell culture experiments also indicate that the adhesives show excellent biocompatibility and osteogenic ability in vitro. Especially, it can degrade in vivo gradually and promote fracture healing in the rabbit iliac fracture model. These results demonstrate that this ingenious bone adhesive exhibits great potential in the treatment of comminuted fractures, providing fresh insights into the development of clinically applicable bone adhesives.


Assuntos
Fraturas Cominutivas , Adesivos Teciduais , Animais , Coelhos , Adesivos/química , Poliuretanos/farmacologia , Poliuretanos/química , Cimentos Ósseos/química , Adesivos Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA